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Av. Litorânea s/n, 24210-346 Niterói, RJ, Brazil
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We study a process of heat transfer between a body of heat capacity C(T ) and a sequence of
N heat reservoirs, with temperatures equally spaced between an initial temperature T0 and a final
temperature TN . The body and the heat reservoirs are isolated from the rest of the universe, and
the body is brought in thermal contact successively with reservoirs of increasing temperature. We
determine the change of entropy of the composite thermodynamic system in the total process in
which the temperature of the body changes from T0 to TN . We find that for large values of N the
total change of entropy of the composite process is proportional to (TN − T0)/N , but eventually a
non-monotonic behavior is found at small values of N .

PACS numbers:

I. INTRODUCTION

One of the original formulations of the second law of
thermodynamics, due to Clausius, states that “no pro-
cess is possible whose only result is the transfer of heat
from a body of lower temperature to a body of higher
temperature”. As discussed by Fermi in his book [1],
since as this statement was made the concept of temper-
ature was empirical, to find out which of two bodies has
the higher temperature one had to put them in thermal
contact and find out in which sense the heat flows, it will
flow spontaneously from the body of higher temperature
to the other. So, Clausius’s statement could be rephrased
into “If heat flows spontaneously from body A to body
B, no process is possible whose only result is the transfer
of heat from body B to body A”. To be more precise,
let us isolate the two bodies from the rest of the uni-
verse, to assure that they will not exchange heat or other
forms of energy with the environment, this is implicit in
the term ‘only result’. We may notice in this statement
that already the idea of irreversibility is present: if heat
flows spontaneously from A to B, it will not flow spon-
taneously from B to A. In other words, the process of
transfer of heat between two bodies which are isolated
from the environment is irreversible.

The second law off thermodynamics says that not all
processes which conserve energy, as required by the first
law, occur in nature. In many cases (if not all), if a given
process in an isolated system occurs, the inverse process
does not. This idea was further formalized by the intro-
duction of the concept of entropy, so that processes in
isolated systems which lead to a decrease of the entropy
are not allowed. In particular, in the process of heat
transfer mentioned above, the entropy of the composite
isolated system increases if the heat flows from the body
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of higher temperature to the one of lower temperature,
but would decrease in the inverse process, so that only the
further is allowed. It is interesting to recall that in his
paper of 1885, Clausius summarized the two first laws
of thermodynamics in just two sentences: “The energy
of the universe is constant. The entropy of the universe
tends to a maximum” [2]. We may notice that the uni-
verse is the only composite thermodynamic system which
is isolated by definition.

The entropy in equilibrium thermodynamics is a state
function, so that it is defined for equilibrium states of
the system. When two bodies of different temperatures
are brought into thermal contact, the composite system
in general will go through a sequence of non-equilibrium
states, but if we wait long enough, it will finally reach
a new equilibrium state, where both bodies of the com-
posite have the same temperature, and in this state the
entropy is larger than it was in the initial state. If we now
imagine a process which happens at a very slow rate in
time when compared to the relaxation time of the system
[3], we may reach a situation close to the one in which all
intermediate states of the system are equilibrium states.
In this limit the process is called quasi-static, and there-
fore the whole process may be represented as a path in
the space of variables which define the equilibrium states
of the system. In the particular case in which the entropy
of the final state of the quasi-static process is equal to the
entropy of the initial state, and therefore to the entropies
of all intermediate states, this process will be reversible.

The process we will study in some detail here is the
transfer of heat in isolated systems composed by a heat
reservoir (constant temperature) and a body whose heat
capacity is described by a function C(T ). The initial
temperature of the body is T0 and its final temperature
is TN . The change of the temperature of the body is
accomplished by putting it in thermal contact with a
sequence of N heat reservoirs whose temperatures are
equally spaced between T0 and TN . For a finite num-
ber of reservoirs, each of the sub-processes consists of
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heat transfer between two bodies at different tempera-
tures and is therefore irreversible, leading to an increase
of the entropy of the composite isolated system. In the
limit N → ∞, however, each sub-process will contribute
with a negligible increase of entropy and, what may not
be obvious initially, the total variation of entropy van-
ishes as well, so that this is a concrete example of a limit
which leads to a reversible, quasi-static process of heat
transfer.
This problem, of considerable pedagogical interest,

has been studied before in the literature. For a con-
stant heat capacity, such as is found for ideal gases,
Calkin and Kiang [4] have shown for a cyclic process
(T0 → TN → T0), that the total change of entropy van-
ishes as 1/N in the limit N → ∞ because, although
the number of sub-processes increases, the increase of
entropy in each of them is proportional to 1/N2 in this
limit. A similar situation is proposed in the exercise 4.4-6
in Callen’s book [3]. The same process was studied also
by Thomsen and Bers [5], again for the case of constant
heat capacity and discussing in detail that it is always
possible, given any positive value ǫ, to choose a value of
N for which the increase of entropy is smaller than ǫ.
This argument is then repeated for the inverse process,
thus characterizing the process in the limit N → ∞ as
reversible.
Here we generalize the problem in two ways: the heat

capacity of the system is no longer constant and we de-
velop the increase of entropy as a series in 1/N , so that we
find the corrections to the leading term. We also show
that some symmetries in the result which are valid in
the asymptotic limit close to reversibility are not longer
present for finite values ofN . In particular, we show that,
although in the large N limit the increase of entropy de-
creases monotonically with N , this may not happen at
lower numbers of heat reservoirs. Also, the increase of en-
tropy for the direct process (T0 → TN ) may be different
of the same quantity for the inverse process (TN → T0).
The determination of the change of entropy is given in
section II and applications to particular cases and final
comments may be found in section III.

II. DETERMINATION OF THE CHANGE OF

ENTROPY

Let us define the problem in more detail. Our com-
posite system consists of the body, whose heat capacity
is C(T ) and which will undergo a temperature change
∆T = TN − T0, and a set of N heat reservoirs, at
equally spaced temperatures, so that the temperature
of the reservoir j (j = 1, 2, 3, . . . , N) is equal to Tj =
T0 + j∆T/N . The body is brought into thermal contact
with the heat reservoirs in order of increasing values of j
until its temperature equals the one of the reservoir and
therefore is increased bi ∆T/N . In the first sub-process,
for example, the body starts with temperature T0 and
ends with temperature T0 +∆T/N . After the N ’th pro-

cess, the body will reach the final temperature TN . This
sequence of heat transfer processes is illustrated in fig-
ure 1. Actually, one could argue that the time required
to reach equilibrium for each sub-process of heat transfer
would be infinite, and for this reason, Thomsen and Bers,
in their discussion of a similar process [5], have chosen the
temperature of the j’th reservoir to be T0+(j+1)∆T/N ,
thus assuring that the equilibration time of the system
with each reservoir is finite. Here, for simplicity, we will
not use this improved version of the process.

2
T1T jT NT

s

FIG. 1: Illustration of the j’th process of heat transfer, where
the system s is in thermal contact with the heat reservoir at
temperature Tj , so that its temperature is changed from Tj−1

to Tj . The pair system-reservoir at Tj is isolated, as are all
the other reservoirs.

If a the body, at temperature T , receives a quan-
tity of heat dQb, its temperature will change by dT =
dQb/C(T ). The change of entropy of the body in the
whole sequence of heat transfer processes is:

∆Sb =

∫ TN

T0

dQb

T
=

∫ TN

T0

C(T )

T
dT.

The change of entropy of all reservoirs in the sequence of
processes will be:

∆Sr(N) =

N
∑

j=1

∆Sr(N, j) =

N
∑

j=1

1

Tj

∫ Tj

Tj−1

dQr =

−

N
∑

j=1

1

Tj

∫ Tj

Tj−1

C(T ) dT, (1)

where in the last passage, we recall that in each sub-
process, the body and the reservoir are isolated, so that
the heat received by the reservoir is given by dQr =
−dQb = −C(T ) dT . We thus may write the total change
of entropy as:

∆S(N) = ∆Sb(N) + ∆Sr(N) =
∫ TN

T0

C(T )

T
dT −

N
∑

j=1

1

Tj

∫ Tj

Tj−1

C(T ) dT.(2)

If it is possible to perform both integrations, this expres-
sion above becomes:

∆S(N) = Sb(TN )− Sb(T0)−

N
∑

j=1

1

Tj
[U(Tj)− U(Tj−1)],

(3)
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where Sb(T ) =
∫

C(T )/T dT and U(T ) =
∫

C(T ) dT . It
is convenient to rewrite the expression for the change of
entropy as:

∆S(N) =

N
∑

j=1

∫ Tj

Tj−1

κj(T,N)φ(T ) dT, (4)

where κj(T,N) = 1 − T/Tj and φ(T ) = C(T )/T . It
is now easy to see that, since stability implies that
φ(T ) ≥ 0, we must have ∆S ≥ 0, as required by the
second law of thermodynamics. Let us show this in some
detail. Suppose that TN > T0, so that the temperature
of the body increases in the process. It is then clear that
κj(T,N) ≥ 0 and as a consequence the entropy of the
composite system increases. The same happens in the
inverse process, where the temperature of the body de-
creases from TN to T0. In this case the change if entropy
is:

∆S′(N) = −
N
∑

j=1

∫ Tj

Tj−1

κj−1(T,N)φ(T ) dT, (5)

and since now κj−1(T,N) ≤ 0 in the range of integration,
again the entropy increases. It may be worth noticing
that the difference of the entropy increases between the
processes with raising and lowering of the temperature of
the body δS(N) = ∆S′(N)−∆S(N) is:

δS(N) =

N
∑

j=1

∫ Tj

Tj−1

[(

1

Tj−1
+

1

Tj

)

T − 2

]

φ(T ) dT, (6)

and the sign of this expression is not defined in general.
Another general property of the entropy increase is its

dependence of the number of reservoirs N . As we will
see below, it vanishes in the limit N → ∞ of a quasi-
static process. The question we will address is if the
change of the entropy decreases monotonically with N .
For convenience, we will define the function:

κ(T,N) =

N
∑

j=1

Θ(T − Tj−1)Θ(Tj − T )κj(T,N), (7)

where Θ(T ) is the step function. The function κ(T,N)
is defined in the whole temperature range [T0, TN ] and
has a sawtooth pattern, with N maxima of decreasing
values. The expression for the entropy increase Eq. (4)
may then be cast into the following form:

∆S(N) =

∫ TN

T0

κ(T,N)φ(T ) dT. (8)

The difference of entropy increases for two values of N ,
(N2 > N1) is:

∆S(N1)−∆S(N2) =

∫ TN

T0

[κ(T,N1)− κ(T,N2)]φ(T ) dT.

(9)

10 12 14 16 18 20
T

-0,1

-0,05

0

0,05

κ(
T

,5
)-

κ(
T

,6
)

FIG. 2: The function κ(T, 5)−κ(T, 6) for initial temperature
T0 = 10 and final temperature TN = 20.

It is straightforward to see that if N2 is a multiple of N1

the difference of κ functions is non-negative, and there-
fore ∆S(N1)−∆S(nN1) ≥ 0 for any integer n. For exam-
ple, we have ∆S(1) > ∆S(2). This, however, is no longer
true in general if the ratio N2/N1 is not an integer. As an
example, in figure 2 we show the difference of κ functions
for N1 = 5 and N2 = 6, and we notice that this differ-
ence assumes negative values in part of the temperature
domain. We thus reach the conclusion that, depending
on the function φ(T ), the entropy increase for N2 heat
reservoirs may be larger than the one for N1 reservoirs,
if 1 < N2/N1 < 2.

We now proceed obtaining the general asymptotic be-
havior of ∆S(N) for N ≫ 1. Expanding the last integral
in the expression for the increase of entropy, Eq. (2),
which corresponds to the amount of heat Qj exchanged
by the body with reservoir j, in a Taylor series around
the temperature Tj, we get:

Qj = −

∞
∑

i=1

(−1)i

i

(

∆T

N

)i

C(i−1)(Tj), (10)

where a superscript between parenthesis means a deriva-
tive of the corresponding function of the order of the su-
perscript. We may now write the total change of entropy
as:

∆S(N) =

∫ TN

T0

C(T )

T
dT +

∞
∑

i=1

(−1)i

i

(

∆T

N

)i N
∑

j=1

C(i−1)(Tj)

Tj
. (11)

We now proceed transforming the sum over the reser-
voirs into an integral, using Euler-MacLaurin’s expansion
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[6]:

n
∑

i=m

f(i) =

∫ n

m

f(x) dx +
1

2
[f(n) + f(m)] +

kmax
∑

k=1

B2k

(2k)!

[

f (2k−1)(n)− f (2k−1)(m)
]

+

Rkmax
, (12)

where B2k are the Bernoulli numbers (B2 = 1/6, B4 =
−1/30, B6 = 1/42, B8 = −1/30, . . .. See [7] for a list of
the numbers). The series in the right hand side is diver-
gent in many cases, since the Bernoulli numbers increase
very fast for larger values of k. There are procedures to
evaluate the rest Rkmax

[6] and we will discuss this issue
in the appendix. The sum we will convert into an integral
is:

Gi =

N
∑

j=1

C(i−1)(Tj)

Tj
=

N
∑

j=0

C(i−1)(Tj)

Tj
−

C(i−1)(T0)

T0
,

(13)
and applying the expansion (12) we find:

Gi =
N

∆T

∫ TN

T0

C(T )(i−1)

T
dT +

1

2

[

C(i−1)(TN )

TN
−

C(i−1)(T0)

T0

]

+

kmax
∑

k=1

B2k

(2k)!

(

∆T

N

)2k−1

×

[

(

C(i−1)(TN )

TN

)(2k−1)

−

(

C(i−1)(T0)

T0

)(2k−1)
]

+Rkmax
. (14)

Now we may substitute this last expression into Eq.
(11) and collect the terms in the change of entropy of
the body in the sequence of processes in powers of 1/N .
We notice, as expected, than the term of order 0 cancels,
so that, in the limit N → ∞ the whole process becomes
reversible. In the appendix, we proceed calculating all
coefficients σi of the expansion

∆S(N) =

imax
∑

i=1

σi

(

1

N

)i

, (15)

but here we we will limit ourselves to the leading term,
which is:

σ1 =
TN − T0

2

[

∫ TN

T0

C(1)(T )

T
dT −

(

C(TN )

TN
+

C(T0)

T0

)

]

.

(16)
Integrating by parts, we finally obtain the leading term
of the expansion:

∆S(N) ≈
TN − T0

2N

∫ TN

T0

C(T )

T 2
dT, (17)

valid in the limit N ≫ 1.
Since C(T ) ≥ 0, we notice that the leading term van-

ishes only in the trivial case where C(T ) = 0 in the whole
range of temperatures and there is no heat transfer, so
that the asymptotic behavior as 1/N in the increase of
entropy, as was found in the particular case of an ideal gas
[4], is universal. We also remark that in the asymptotic
regime the entropy increase is invariant if the tempera-
tures are interchanged and also monotonically decreasing
with N , properties which are not true in general for small
values of the number of reservoirs.

III. DISCUSSIONS AND CONCLUSION

We will now apply the results of the preceding section
to some particular cases of physical interest. We start
with the ideal gas, which has a constant heat capacity
C(T ) = C0. Applying Eq. (2) to this particular case, the
increase of the entropy will be:

∆S(N)

C0
= ln f −

f − 1

N

N
∑

j=1

1

1 + j
N (f − 1)

, (18)

where f = TN/T0. The leading term in this case is:

∆S(N)

C0
≈

1

2N

(

√

f −
√

1/f
)2

. (19)

In figure 3 we show some curves of the entropy increase
as a function of 1/N , for different values of the ratio
of temperatures f , as well as the dashed straight lines
which represent the asymptotic behavior. Notice that,
as expected, the same asymptotic behavior is found for
f = 2 and f = 1/2. If we consider two processes, one
with ratio f1 > 1 and the other with f2 = 1/f1 < 1, that
is, related by interchange of the temperatures, both will
have the same asymptotic behavior, as may be seen in
the particular cases depicted in the figure. Also, the in-
crease of entropy in the second process, where the body
is cooled, is always larger than the one in the first pro-
cess. Another way to state the same property is that,
as can be seen in the curves, the increase of entropy is
a concave function of 1/N for processes where the body
is heated and it is a convex function when the temper-
ature of the body decreases. In the asymptotic regime
these properties may be obtained the next term of the
Euler-MacLaurin expansion, as will be discussed in the
appendix. Also, the increase of entropy for this particular
case is a monotonically decreasing function of N .
In most cases the variation of entropy decreases mono-

tonically with N , a property which seems also intuitive,
since by decreasing the temperature steps in a certain
sense the composite process gets closer to a reversible
process. For the ideal gas this is always the case. We have
seen above, however, that this may not be generally true.
If we look at the Eq. (9) for the difference of entropy in-
creases for different values of N , a non-monotonic result
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0 0,2 0,4 0,6 0,8 1
1/N

0

0,5

1
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/C

0

FIG. 3: Increase of entropy for a system with constant heat
capacity C0 (ideal gas) as a function of the inverse number of
reservoirs 1/N . The four curves, in the upward order, corre-
spond to ratios of temperatures f = TN/T0 = 2, 1/2, 5 and
1/5. The dashed straight lines are the asymptotic behavior
for small 1/N .

is possible if the function φ(T ) has one or more peaks at
the temperatures where κ(T,N1)− κ(T,N2) is negative.
One system which could possibly show a non-monotonic
behavior is a two-state system [3], since its heat capac-
ity displays a peak, sometimes called “Schottky hump”.
However, we found that this is not the case, the reason
is that the peak is too wide to produce a non-monotonic
behavior.
We turn our attention to a situation where the width

of the peak in the heat capacity may be changed by ad-
justing a parameter. The simple expression we will use
for the heat capacity is:

C(T ) = C[τ(2 − τ)]m, (20)

where τ = T/Tc, so that Tc is the temperature where
the maximum of the heat capacity is located, and C is
a constant with the dimension of entropy. Although this
heat capacity does not correspond to a particular physi-
cal system, it is convenient for analytic calculations and
consistent with the third law of thermodynamics. Of
course, at least for odd values of the parameter m, it is
valid only if τ is in the range [0, 2], so we will restrict
ourselves to this range of temperatures. As the param-
eter m grows, the peak in C(T ) narrows, and our main
interest in this system is that, for sufficiently large values
of m, non-monotonic behavior is found in ∆S(N).
In figure 4 we show, in the same graph, the function

κ(τ, 2) − κ(τ, 3) and the function φ(τ) = C(τ)/(Cτ),
given by Eq. (20) with m = 16. As is apparent in the
graph, with the choices of initial (τ0 = 0.286) and final
(τN = 2.0) temperatures we made, the maximum of the
peak in C(T ) is close to the center of the negative peak
in κ(τ, 2)−κ(τ, 3), so that the difference ∆S(2)−∆S(3)
is minimized, since this difference is given by Eq. (9). In
table I we list the results for [∆S(3)−∆S(2)]/C for dif-
ferent values of m, with the choices above for τ0 and τN ,
and it is clear that a non-monotonic behavior is found

0,5 1 1,5 2
τ

0

0,5

1

κ(
τ,

2)
−κ

(τ
,3

); 
 φ

(τ
)

FIG. 4: κ(τ, 2)−κ(τ, 3) (dashed line) and the function φ(τ ) =
C(τ )/(Cτ ) = [τ (2− τ )]16/τ . The initial temperature is τ0 =
0.286 and the final temperature is τN = 2.0

m [∆S(3) −∆S(2)]/C

14 −3.158309 × 10−3

15 −3.427008 × 10−4

16 2.185200 × 10−3

17 4.463576 × 10−3

TABLE I: [∆S(3) −∆S(2)]/C for different values of the pa-
rameter m for a system with heat capacity given by Eq. (20).
The temperature range of the process is τ0 = 0.286, τN = 2.0.

for m ≥ 16. Finally, we found some evidence that a
local maximum in the entropy could also be found at
N = 4, but if this actually happens for this particular
form of heat capacity, it will be at rather large values of
m, which lead to numerical problems. We remark that,
in order to reduce numerical errors, in all examples we
discuss the integrations involved in the calculation of the
entropy increase Eq. (2) are performed analytically, as is
done in Eq. (3).
As discussed before, we expect, qualitatively, the non-

monotonic behavior to be enhanced if the peak in the
heat capacity is more pronounced. This leads us, in this
final example, to a system which undergoes a continuous
phase transition, since in this case a singularity at the
critical temperature Tc is found in the heat capacity, of
the form C(T ) ≈ |1− T/Tc|

−α, described by the critical
exponent α [8]. To the singular behavior of the heat
capacity, usually regular contributions should be added,
so that we will use the simple expression:

C(T ) = Cτ |1 − τ |−α, (21)

where we define the reduced dimensionless temperature
τ = T/Tc and which is compatible with the third law
of thermodynamics. It should be mentioned that since
the exchange of heat when the temperature of the body
crosses the critical temperature has to be finite, we should
restrict the critical exponent α to values smaller than 1.
It is easy to perform the necessary integrations in this
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1/N

0
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2

3

4
∆S

(N
)

FIG. 5: Values of ∆S(N) as function of 1/N for a body with
a continuous phase transition (Eq. (21)). The upper curve is
for α = 0.7 and the lower one for α = 0.5. The pairs of data
at the end of the thick lines are the first ones, in the order of
increasing values of N , where a increase of ∆S(N) is found.
These results are for τ0 = 0.2 and τN = 2.2.

case, so that the entropy increase will be given by Eq.
(3) with:

Sb(τ)

C
=











− (1−τ)1−α

1−α , τ < 1,

(τ−1)1−α

1−α τ ≥ 1,

(22)

and

U(τ)

CTc
=











− (1−τ)1−α

(1−α)(2−α) [1 + (1− α)τ ], τ < 1

(τ−1)1−α

(1−α)(2−α) [1 + (1− α)τ ], τ ≥ 1.

(23)

We would expect that the non-monotonic behavior of
the entropy should be enhanced as the value of the critical
exponent α increases. This is actually true, but at vari-
ance with what is seen in the preceding example of a peak
in the heat capacity, the local maxima of the entropy in-
crease, for lower values of α, appear at larger values of
N . In figure 5 we see results of the increase of entropy
for two values of the exponent, α = 0.7 and α = 0.5. It
is apparent that, for α = 0.7 we already have an increase
of the change of entropy between N1 = 2 and N2 = 3,
the segment with a thicker line in the curve. Many other
pairs of successive results with the same property are
found for larger values of N . For α = 0.5, the first pair
where the change of entropy increases is seen at N1 = 7,
N2 = 8.
For a given a value of the critical exponent α, we may

find N1, the lowest value of N such that ∆S(N2) >
∆S(N1), where N2 = N1 + 1. In figure 6, the exponent
α is plotted as a function of 2/(N1 +N2), and we notice
that, at least for large values of α, that the function shows
steps. The results shown are calculated for τ0 = 0.2 and
τN = 2.2. Thus, for example, if α > 0.555, we notice
that the first increase of ∆S(N) is seen between N1 = 2
and N2 = 3, while if α is in the range [0.555, 0.454] this

0 0,1 0,2 0,3 0,4
2/(N

1
+N

2
)

0

0,1

0,2

0,3

0,4

0,5

0,6

α

FIG. 6: Values of the critical exponent α for which the first
increase of ∆S(N) if found between N1 and N2 = N1 + 1,
as function of 2/(N1 + N2). The data are for τ0 = 0.2 and
τN = 2.2.

increase is seen at N1 = 7, N2 = 8, if α is further de-
creased the increase shifts to N1 = 12, N2 = 13, and so
on. This pattern, although qualitatively remaining the
same, changes quantitatively for a different temperature
range. We notice an interesting behavior for small val-
ues of α, which leads to the question if, for any positive
α an increase if ∆S(N) is found for a finite value of N .
Due to round-off errors, we could not address this ques-
tion numerically. However, since the coefficients σi in the
Euler-MacLaurin expansion Eq. (15) diverge in this case
for i > 1 and any positive α, the answer to this question
should be positive. We discuss this point somewhat more
in the appendix.

Finally, we notice that, in opposition to what was
found in the first two examples we studied, when the
body undergoes a continuous phase transition it is pos-
sible that ∆S(N) > ∆S′(N), that is, the increase of en-
tropy in the heating process is larger than the one in the
cooling process, a possibility which was anticipated in the
discussion after Eq. (6). In figure 7 we present results
for the difference in entropy increases ∆S′(N)−∆S(N),
for α = 0.7 and α = 0.5, as functions of 1/N . The tem-
perature interval is τ0 = 0.2, τN = 2.2 Although in most
cases this difference is positive, for α = 0.7 already for
n = 13 we get a negative result, and a set of values of N
above this one have the same property. For α = 0.5 the
effect is smaller, and the first occurrence of a negative
result is for N = 88. Again it would be interesting to
study more details of these results at large values of N ,
but round-off errors prevent this to be done numerically.
A final remark on this example is that, if τ ≪ 1,

C(τ) ≈ Cτ , so that it will show a behavior similar to
a gas of non-interacting fermions at low temperature. In
this case, if the initial temperature τ0 approaches 0, the
coefficient σ1 diverges as a logarithm. In other words, in
a heating process starting at τ0 = 0, the tangent to the
curve ∆S × 1/N at the origin is vertical. This curve is
concave, since σ2 is negative. The even more unphysical
cooling process with vanishing final temperature shows a
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FIG. 7: Difference in the increases of entropy in the cooling
and the heating processes ∆S′(N)−∆S(N), for τ0 = 0.2 and
τN = 2.2. The curve with larger oscillations is for α = 0.7
and the other one for α = 0.5.

very uncommon behavior: ∆S(N) diverges for any finite
N and vanishes as N → ∞.

In conclusion, we notice that in general the process of
heat transfer between a body and a sequence of heat
reservoirs, is a very rich physical situation for under-
standing of the second law of thermodynamics and the
concept of a reversible process. In particular, if the body
undergoes a continuous phase transition in the composite
process, some curious phenomena appear , which at first
seem to defy common sense, but of course none of them
violates thermodynamics.

Appendix: Euler-MacLaurin expansion

Here we will develop the terms of the Euler-MacLaurin
expansion in some detail. If we substitute Eq. (14) into
Eq. (11) and collect the terms in the change of entropy of
the body in the sequence of processes in powers of ∆T/N .
We notice, as expected, than the term of order 0 cancels,
so that, in the limit N → ∞ the whole process becomes
reversible. The coefficients we obtain for the change of
entropy Eq. (15) are:

σi = (−1)i(TN − T0)
i

{

−1

(i+ 1)

∫ TN

T0

C(i)(T )

T
dT+

+
1

2i

(

C(i−1)(TN )

TN
−

C(i−1)(T0)

T0

)

+

[i/2]
∑

k=1

(−1)2k−1B2k

(i+ 1− 2k)!(2k)!
×

[

(

C(i−2k)(TN )

TN

)(2k−1)

−

(

C(i−2k)(T0)

T0

)(2k−1)
]}

, i = 1, 2, 3, . . . (A.1)

The two first coefficients of this series, after integrating
by parts, are:, are:

σ1 =
TN − T0

2

∫ TN

T0

C(T )

T 2
dT, (A.2)

and

σ2 = −
(TN − T0)

2

12

[

4

∫ TN

T0

C(T )

T 3
dT+

C(TN )

T 2
N

−
C(T0)

T 2
0

]

. (A.3)

We notice that σ1 ≥ 0, and vanishes only if the tempera-
ture interval is zero or if C(T ) = 0 in the whole interval.
In other words, if there is a non-zero heat exchange be-
tween the body and the reservoirs, σ1 is positive. If this
coefficient could be negative, the second law would be vi-
olated. It is also invariant with respect to a permutation
of the temperatures, as was already noted in the exam-
ples discussed above. The sign of the second coefficient
σ2 is not fixed, and, as happens with all coefficients of
even order, it switches under permutation of the temper-
atures. The odd order coefficients do not change their
sign under this permutation.
In the particular case of an ideal gas, where C(T ) =

C0, the coefficients are:

σ1 = −C0
TN − T0

2

(

1

TN
−

1

T0

)

, (A.4)

σ2k = C0
B2k(TN − T0)

2k

2k

(

1

T 2k
N

−
1

T 2k
0

)

, (A.5)

where the last expression is valid for k=1,2,3,. . . . We no-
tice that, with the exception of the dominant term, only
terms with even powers of 1/N appear in the expansion
for this particular case. For the heating process TN > T0,
σ2 < 0, so that the ∆S is a concave function of 1/N in
the limit N → ∞. For the cooling process TN < T0, the
function is convex. These properties can be verified in
the numerical results presented in figure 3.
Very often the expansion in the Euler-MacLaurin sum-

mation (12) does not converge. We find that even for
N = 1 the truncated asymptotic values are close to the
exact ones at rather low orders. However, truncating at
higher orders does not necessarily lead to results closer
to the exact ones. For example, for N = 1 the result
closest to the exact one is found truncating the series at
kmax = 6. We notice that higher orders of truncation
lead to wrong results, as may be seen in figure 8, where
the increase of entropy calculated using the expansion
Eq. (15), for N = 1 and TN/T0 = 2, is shown for sev-
eral orders of truncation. The results oscillate around
the exact value at successive orders. The best result is
obtained for imax = 6 and if we truncate the expansion
at larger orders we observe that they start deviating from
the exact value.
In the table II, we present more results of such calcu-

lations. We notice that quite accurate estimates of the
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FIG. 8: Increase of entropy for a system with constant heat
capacity C0 as a function the order of truncation of the asymp-
totic expansion imax. The ratio of temperatures TN/T0 is
equal to 2 and the number of reservoirs is N = 1. The exact
value corresponds to the dashed line.

entropy change may be obtained if the series is truncated
at the most favorable order. The question of determin-
ing the order which minimizes the rest R in the Euler-
MacLaurin expansion Eq. (12) is rather technical and we
refer to the specialized literature for details, but in gen-
eral it may be assured that, if f(x) in Eq. (12) has always
the same sign and if the function and all its derivatives
tend monotonically to 0 as x → ∞, which are valid for
f(N) = ∆S(N), then the rest Rkmax

is of the same order
and has the same sign of the first neglected term [6].

Finally, it is clear from Eq. (A.1) for the expansion
coefficients, that for the case of a singular heat capacity
at a critical temperature Tc (C(T ) = Cτ(1 − τ)α, with
τ = T/Tc), all but the first coefficients diverge if the
temperature interval includes the critical temperature.
This fact may account for the rather peculiar behavior
found numerically in the large N limit.
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TN/T0 N kmax |∆S −∆Skmax |/∆S ∆S

1/3 1 2 6.8311 × 10−2 0.9014

1/3 2 6 4.3650 × 10−3 0.4014

1/3 3 8 2.5634 × 10−4 0.2538

1/3 4 12 1.2824 × 10−5 0.1847

1/3 5 16 6.4910 × 10−7 0.1450

1/3 6 18 3.0760 × 10−8 0.1192

1/2 1 6 5.6735 × 10−3 0.3069

1/2 2 12 1.6897 × 10−5 0.1402

1/2 3 18 4.0671 × 10−8 0.0765

2 1 6 9.0135 × 10−3 0.1931

2 2 12 2.1570 × 10−5 0.1098

2 3 18 4.7960 × 10−8 0.0765

3 1 2 1.4255 × 10−1 0.4319

3 2 6 6.6046 × 10−3 0.2653

3 3 10 3.4783 × 10−4 0.1907

3 4 12 1.5940 × 10−5 0.1486

3 5 16 7.7345 × 10−7 0.1217

3 6 18 3.5619 × 10−8 0.1030

TABLE II: Body with constant heat capacity (C(T ) = C0).
Values of the relative difference between the increase of en-
tropy calculated directly (∆S) and the one which follows trun-
cating the series Eq. (15) (∆Skmax). Several values for TN/T0

and N are considered, and the optimal order of truncation
imax is given.


